The role of integrin-linked kinase/β-catenin pathway in the enhanced MG63 differentiation by micro/nano-textured topography.
نویسندگان
چکیده
Micro/nano-texturing is a promising approach to produce biomaterials with better tissue integration properties, but the underlying mechanisms are only partially understood. We propose that the integrin-linked kinase (ILK)/β-catenin pathway may play a role in mediating the signals of topographical cues to cells. To confirm the hypothesis, human MG63 osteoblasts are cultured on the micro/nano-textured topographies (MNTs) to assess the cell differentiation in terms of collagen secretion, extracellular matrix mineralization, and osteogenesis-related gene expression. The expression of β-catenin, ILK and integrin β1 and β3 is assayed by real-time polymerase chain reaction and the protein levels of β-catenin, phosphorylated glycogen synthase kinase 3β (p-GSK3β) and ILK are determined by western blot. The ILK silenced MG63 induced by small interfering RNA is cultured on the samples and the cell functions and the levels of β-catenin, GSK3β and p-GSK3β are determined. The results show that the MNTs enhance MG63 differentiation and it is related to the higher expression of integrin β1 and β3 and ILK, which activate the β-catenin signaling by initiating β-catenin expression and inhibiting its degradation by phosphorylating GSK3β. ILK silencing attenuates the β-catenin signaling activation and the enhanced MG63 differentiation by the MNTs. Our results explicitly demonstrate the role of the ILK/β-catenin pathway in mediating the signals from topographical cues to osteoblasts to tailor differentiation and provide new target points for biomaterials modification and biofunctionalization to attain better clinical performance.
منابع مشابه
TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملGene co-expression network analysis identifies BRCC3 as a key regulator in osteogenic differentiation of osteoblasts through a β-catenin signaling dependent pathway
Objective(s): The prognosis of osteoporosis is very poor, and it is very important to identify a biomarker for prevention of osteoporosis. In this study, we aimed to identify candidate markers in osteoporosis and to investigate the role of candidate markers in osteogenic differentiation. Materials and Methods: Using Weighted Gene Co-Expression Network analysis, we identified three hub genes mig...
متن کاملWnt/β-catenin signaling pathway activation reverses gemcitabine resistance by attenuating Beclin1-mediated autophagy in the MG63 human osteosarcoma cell line
Anaberrant Wnt/β-catenin signaling pathway is frequently implicated in tumorigenesis. However, whether the Wnt/β‑catenin pathway plays a role in resistance to antitumor chemotherapy drugs remains unknown. In the present study, the process of autophagy was assessed following overexpression of the autophagy‑associated gene Beclin 1 in gemcitabine‑induced MG63 human osteosarcoma cells. Autophagy‑a...
متن کاملExtracellular matrix stiffness dictates Wnt expression through integrin pathway
It is well established that extracellular matrix (ECM) stiffness plays a significant role in regulating the phenotypes and behaviors of many cell types. However, the mechanism underlying the sensing of mechanical cues and subsequent elasticity-triggered pathways remains largely unknown. We observed that stiff ECM significantly enhanced the expression level of several members of the Wnt/β-cateni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2013